
Scalable Mechanisms for Requirements Interaction Management

Martin S. Feather, Steven L. Cornford, Mark Gibbel
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91109, USA
Martin. S. Featherwpl. Nasa. Gov
Steven. L. Cornfordwpl. Nasa. Gov

Mark.Gibbel@pl.Nasa.Gov

Abstract
Capturing requirements, and managing tradeoffs among
them, are critical yet complex activities. Well-designed
computerized tools can effectively support these
activities. A key challenge in construction of these
support tools is how to scale them to handle a large
volume of information. Particularly crucial are the ways
in which large numbers of requirements and their
interrelationships are presented to users. They need to
be able to zoom in and out through the space of
information so as to be able to see the big picture, and to
locate and focus on speclfic details when needed. This
paper describes a harmonious combination of
techniques that support such scalabili@.
The techniques have been embodied in a NASA tool,
DDP, for defect detection and prevention. They have
been exercised in uses of this tool for requirementshsk
tradeoffs, and population of this tool to capture
institutional knowledge-bases of information.

1. Introduction

1.1. Requirements Interaction Management
Arriving at a set of requirements that is both

beneficial (meets customer needs) and cost effective
(can be implemented at reasonable cost) is an important
early step in software development. [Karlsson & Ryan,
19971 reports two case studies of commercial projects
that reveal the value of this. In the first study they found
that by judiciously selecting a subset of requirements,
94% of the software system’s maximum possible value
to its customers could be met at 78% of the cost for
implementing all requirements. The second study had
figures of 95% of possible value at 75% of cost.

Determining the set of requirements to implement can
be far from easy, especially when requirements interact

with one another, or are still evolving. [Robinson et al,
19991 coin the term “Requirements Interaction
Management” to cover this challenging area. Their
definition reads:

“Requirements Interaction
Management is the set of activities
directed towards the discovety,
management, and disposition of
critical relationships among sets of
requirements.”

Robinson et a1 survey seven projects that offer
support for requirements interaction management,
providing a wide variety of automated support for
various aspects of the process.

The challenges stem from three sources: the sheer
number of requirements and interactions, and the fact
that requirements lie at the critical boundary between
human understanding and machine representation, and
the evolving nature of requirements as peoples’
understanding improves. Human involvement is
indispensable, yet manually applied processes quickly
become tedious.

For example, Ryan & Karlsson employ the Analytic
Hierarchy Process [Saaty, 19801 to establish
prioritization of requirements by painvise comparisons
among them. In [Ryan & Karlsson 19771 they state, “The
process was tedious, and was only realistic for small
(<20) sets of requirements. Neither did it take account of
the interdependencies between requirements that
frequently occur in real projects.” They go on to describe
a prototype tool to support the process, now a
commercial product Focal PointTM [Focal Point AB].

At NASA, we face similar challenges of requirements
interaction management. One area of particular concern
is risk management, where risks are the things that,
should they occur, will lead to loss of requirements.
Determining the impact of risks is done by quantitatively
interrelating risks with requirements. A wide variety of

mailto:Mark.Gibbel@pl.Nasa.Gov

mitigation strategies are available to decrease risk, and
thereby increase likelihood of attaining requirements.
Determining the effectiveness of mitigations is done by
quantitatively interrelating mitigations with risks.
Appropriate selection of risk mitigations must balance
their costs (budget, schedule, etc.) against their benefits
(risk reduction). Like Ryan & Karlsson, we recognized
early on that tool support was essential to support this
process. In building this tool support we have found
scaling to a large number of requirements, risks and
mitigations is of key importance if the tool is to be
effective. Particularly crucial are the ways in which large
numbers of objects and their interrelationships are
presented to users to assist their decision-making.

The purpose of this paper is to present realization of a
harmonious combination of techniques that support such
scalability. While these have been designed for our
particular application (risk management for spacecraft
flight systems), we feel that many of our approaches
would have benefit to other tools that support
requirements interaction management.

The remainder of this paper is organized as follows:
Section 2: An overview of NASA’s Defect Detection

and Prevention process, the objective of our tool support.
This is the source of our examples throughout the paper.

Sections 3 - 6: key mechanisms that support
scalability. Each is introduced in general terms, then the
DDP solution is presented and discussed.

Section 7: Future Work
Section 8: Related Work and Conclusions

2. NASA’s Defect Detection and
Prevention (DDP) Process

NASA’s Defect Detection and Prevention (DDP)
process [Cornford, 19981 is a method for optimizing the
collection of mitigation activities performed on a project.
It allows one to perform overall risk management for
flight systems. Since these prevention and detection
activities incur costs (e.g., budget and schedule), their
selection must tradeoff their costs against their benefits.

The principal elements of DDP are:
Requirements - the desired goals.

*Failure Modes (FMs) - the risks that, should they
occur, cause loss of requirements.

Preventions (typically design measures), Analyses,
process Controls (e.g., parts selection) and Tests
(PACTs).

*Impact - a quantitative measure of how much loss
of requirement is caused by an FM.

Effectiveness - a quantitative measure of how much
a PACT reduces the likelihood of a FM.

The DDP process requires tool support to be
effective, because it must manage quantitative
relationships amongst numerous elements. Furthermore,
it must allow real-time brainstorming. Proof-of-concept
studies employed a spreadsheet-based implementation.
Their success established the value of the process, but
revealed the cumbersome nature of the prototype
spreadsheet-based implementation. NASA Code Q then
funded an effort to develop a user-friendly tool for
performing DDP. All of the examples in the sections that
follow are drawn from this tool.

2.1. DDP: an example application.

A prototype of the tool was applied last year to
several non-trivial design activity. A typical one of these
culminated in the capture of 67 requirements, 105 FMs,
and 93 PACTs. A representative screen display of this
data is shown in Fig. 1. (Note: the names of
requirements, FMs and PACTs have been deliberately
garbled so as to protect potentially sensitive
information.). This same data set is used as the source of
all the examples shown in this paper.

The DDP tool employs familiar mechanisms to
display various aspects of this information. Trees are
used to display the hierarchy. For example, in Fig. 1 a
portion of the requirements hierarchy can be seen in the
window labeled “Rqmts” towards the top left of the
screen. To its right, a similar window labeled “FMs”
displays the hierarchy of FMs. Bar charts are used to
display summary numerical information. For example,
the expected degree to which the currently selected
requirements will be met is shown in the upper bar chart
labeled “Requirements (log scale)”. Below it, a
similar window labeled “Risk Balance (log scale)”
displays the expected impact of each of the currently
selected FMs. In the sections that follow we will also see
two matrices, used to display interrelationships (the
impact of FMs on Requirements, and the effectiveness of
PACTs against FMs).

3. Views and Focus
3.1. Desiderata

Many systems offer multiple views into large
information sets. Views can be used to present the same
information in different ways, or to present different (or
only marginally overlapping) subsets of information. For
example, the widely popular Unified Modeling
Language [UML] uses numerous different views into its
requirements and design information. The Knowledge-
Based Requirements Assistant (KBRA) [Czuchry &
Harris, 19881 pioneered many of the multiple-view
techniques for requirements engineering.

when switching between views. As the amount of
information and the number of different views increases,
the chance of confusion rapidly increases. For example,
it is all too easy to loose track of the correspondence
between the same elements presented in different views.

We have found the following practices ameliorate the
problems of navigation between multiple views:

*Keeping the number of kinds of views to a
minimum, reusing the same kind of view for
multiple purposes.

0 Automatically maintaining the equivalence between
overlapping information displayed in different
views.

0 Where feasible, replicating another view’s
information in the current view.

0 Where necessary, judiciously abbreviating
information.

0 Highlighting the current focus of concern.

Keeping the number of kinds of views to a minimum,
reusing the same kind of view for multiple purposes. In
DDP there are four major kinds of views - tree views,
matrix views, bar chart views, and item-specific views -
through which to enter, inspect and adjust information.
Tree views are used to display and restructure each of
the three major classes of DDP hierarchically structured
objects: requirements, FMs, and PACTs. Likewise, bar
chart views are used to display the results of numerical
computations on each of the current selections of these
objects. Matrix views are used to enter, inspect and
adjust the interrelationship information, specifically
between requirements and FMs (how much of a
requirement is lost if a FM occurs) and between PACTs
and FMs (how effective a PACT will be at reducing the
likelihood of a FM). Item-specific views display a single
item at a time for data entry, inspection or adjustment.
For example, when entering a new requirement, the
item-specific view presents all the possible data fields

that can hold values associated with a requirement (title, Grey-background cells display headers, names and
importance, textual description, etc.). aggregate values, while white-background cells display

the numerical value of the relationship between the
Automatically maintaining the equivalence

between overlapping information displayed in
different views. Changes made to information
through one view are immediately reflected in all
the other views of that same information. For
example, when the user adds a new requirement
through the tree view, that same requirement is
automatically added to the bar-chart view.

However, as the scale of the application
increases, the large amount of information
involved can make recalculations
computationally expensive. For example,
suppose the user adjusts the effectiveness of a
PACT on a FM (the PACT’S effectiveness is a
numerical measure of the degree to which it
reduces the likelihood of the FM). That FM
might impact many requirements. The expected
attainment of each of those requirements must be
recomputed, so as to adjust their bars in the
requirements’ bar chart display accordingly. If
this display is in “sorted” mode, it must be re-
sorted.

We ameliorate this by running the
automatic re-computation and redisplay in
the background, so that the user can make
additional changes without waiting for it to
complete. Even this can be irksome when
responsiveness of the display diminishes
noticeably, and so we provide the user the
option to turn off automatic re-computation
and display, perform a batch of changes,
and turn it back on again.

Where appropriate, replicating another
view’s information in the current view.
Multiple views circumvent the impossibility
of displaying all of a large amount of
information in a single screen. However, if
the views overly-fragment the information,
relating one view to another can be hard. In
response, we look for opportunities to
replicate one view’s information in another
view. This is appropriate if it aids the user’s

Figure 2. Tree view of FMs

RxFM 0 or empty = none lost 1 = 100% lost

Figure 3. Matrix view of Requirements (rows) x FMs
(columns)

navigation and can be achieved with little cost (notably,
screen space).

For example, the portion of the tree view in Fig. 2
shows the names, hierarchy, checked I unchecked status,
and expandedunexpanded status of FMs.

Much of this is replicated (but in a different style) in
the corresponding portions of the matrix views - for
example, the Requirements x FMs matrix shown in Fig.
3. Requirements are listed in rows, FMs in columns.

.* I

corresponding FM and requirement (namely, the
proportion of the requirement that would be lost if the
FM were to occur).

Observe that the tree hierarchy is replicated by use of
“header” cells in the matrix. For example the tree view
shows JIT as a parent of Overall grafting, Smell, etc.
The matrix view uses the topmost FM header cell to
display JIT and spanning all the next-level header cells
that are its included children, Overall ..., Smell, etc.

’ . ir 0 17:Zip to Garbu
. . j . 18:Whoa blands to fluffy craft
. . ’. ...O 19:Backside calakak (poi1 yuk growth)
: :

j 9 .Or) 2O:Hopto hop
i * . 33:Smell

i 0 37:u9
+ 45rhlK end-to-end Performance

~ ; i----- 73:GLOB
8 0 87:FM TYPE CATEGORIES

Figure 4. Hierarchy and focus highlighted in
the tree view

The expandedunexpanded statuses of tree nodes are also
indicated in the matrix view, by prefixing unexpanded
nodes’ names with “[+I”. Both of these add navigational
value - within the matrix view the user can readily
discern where a column falls within the hierarchy, and
whether or not it corresponds to an unexpanded node.
Also, note that both of these elements of information can
be provided at a small cost of screen real estate.

Where necessary, judiciously abbreviating
information. Abbreviating one view’s information when
showing it in another view is often a good approach. For

interaction management tools can also take good
advantage of them.

Highlighting the current focus of concern. DDP
employs a notion of “focus” to draw users’ attention to
specific items in the various views. Its primary purpose
is to aid in quickly focussing on some current item(s) of
particular interest, but also serves to anchor users as they
navigate fiom one view to another.

Fig. 4 shows the FM Hop to Hop as being the
current focus, denoted by the blob just to the right of its
check box. Note that its ancestry nodes (Overall
grafting, and JIT) also have these same blobs. This
highlighting of a node’s ancestry is done automatically
by DDP as soon as the user clicks on a leaf node.

Focus in the matrix view is shown in Fig. 5. The same
FM that was in focus in Fig. 4 is in focus here - Hop to
Hop. Its column of data cells is highlighted, as is its
entire ancestry (header cells JIT and Overall Grafting).
Similarly, a row of cells is highlighted corresponding to
the requirement that is also in current focus.

A uniform coloring scheme pervades DDP - a
different color for each of the categories Requirements,
FMs and PACTs. The default scheme (not visible in this
black-and-white reproduction) is:

0 Blue for requirements
Red for FMs
Green for PACTs

Fig. 6 shows the corresponding focus on the “Risk
Balance” bar chart (whose columns correspond to
FMs). The blob beneath the third column corresponds to
same FM as highlighted in the previous two figures. The

rigk clicking on a cell, are also
employed. The user-interfaces of -
many existing tools make us

I I
-. ,

Figure 5. Hierarchy and focus highlighted in the matrix view
familiar with these kinds of
capabilities, and requirements

number beneath each FM bar is the same as that FM’s
number in the tree view. The presence of a “+” beneath a
bar indicates it corresponds to an unexpanded parent
FM.

F

Risk Balance (log scale)
(19

]re 6. Focus in the bar chart view

4. Selection and Hierarchy
4.1. Desiderata

When handling voluminous amounts of information,
it is important to provide users the ability to select
subsets of information to work with. This permits them
to focus their attention on the just the information
relevant to the issues at hand, and avoid distraction of
extraneous information. Without the capability to
perform such selection, most obvious display regimes
become unwieldy as the volume of information grows
beyond trivial amounts. For example, users of the DDP
precursor tool found they were continually scrolling
across extensive matrices, because the full set of data
was too large to fit onto a single screen.

4.2. DDP Realization
DDP provides the obvious capabilities for deleting

information that is irrelevant to the task in hand. For
example, the user can start from a pre-formulated set of
FMs, and delete those that are not applicable to the
current design. Those deleted FMs then play no further
role in the user’s world.

More interesting are the capabilities for temporary
removal of information. Temporary implies the
capability to reverse the removal. DDP uses “check
boxes” to both control the removal process (information
is temporarily removed by unchecking, and re-

introduced by checking), and to identify what
information is available for such re-introduction. DDP
also employs the familiar notions of expanded and
contracted trees, using Microsoft WindowsTM
conventions of “+” and “-” boxes for indicating and
controlling the status of expansion of the displayed tree
(a “+” box means there are undisplayed children of the
corresponding node; clicking that box causes expansion
to take place). MacintoshTM users are familiar with the
same concept, but using arrow symbols in place of those
boxes. Temporarily collapsing a sub-tree is a means to
remove from view the details of its sub-structure. DDP
harmoniously combines check boxes with tree structures,
as described next.

Figure 2 (repeated for convenience below) illustrates
DDP’s combination of check boxes with tree structures.

.. H$ 9:JIT
. m@ 10:Overall grafting

$ ll:Malfazing/Jaspering Constraints
i . P ---a 15:Operalion i.-...B 16:Excessive smug on quoul in exit

17:Zip to Garbu
- 8 18:Whoa blands to fluffy craft
: ... 19:Backside calakak (poi1 yuk growth)

iF a$ZO:Hop lo hop
QH 33:Smell
?!o 37:u9

! 45:AIK end-to-end Performance

, 0 87:FMlYPE CATEGORIES
I 8 73:GLOB

Repeat of Figure 2. Tree view of FMs.

DDP provides selection and hierarchical structuring.
They are combined so as to operate harmoniously
together. A node of a tree is included in the current set of
information if and only if its check box is checked, and
all its ancestors’ check boxes are also checked. For
example, Excessive smug on quoul in exit is
included, because its check box is checked, as is the
check boxes of all its ancestors (namely, Operation,
Overall grafting, and JIT). Conversely, Whoa
blands to fluffy craft is not included, because
although its check box is checked, not all of its
ancestors’ check boxes are checked (Zip to Garbu is
unchecked). This allows for the rapid selectiodde-
selection of whole sub-trees at once, by simply
checkinglunchecking the root node.

Experience with using the tool showed that it is
common to need to include a leaf node when one or
more of its ancestors are unchecked. Given the above
interpretation of checks combined with hierarchy, this
implies that all the unchecked ancestor nodes must be
checked so as to include the leaf node in the current
selection. DDP accommodates this by automatically
checking an unchecked node’s ancestors whenever that
node is checked. This is preferable to forcing the user to
perform these steps manually, or disrupting the natural
interpretation of checking and hierarchy.

In DDP, the effect of checking and tree
expansion is carried over to other views, notably
matrix and bar chart views. The tree view’s checks
and expansions determine the set of information
and its depth of detail as displayed in those other
views. In particular, the included nodes at the
fringe of the tree are displayed. For example, Fig 3
shows the RxFM matrix corresponding to the
above selection of FMs. It displays the six FMs
that are the currently included nodes at the fringe
of the FM tree, Malfazing ..., Excessive ..., Hop
to Hop, Smell, AIK ... and GLOB, corresponding
to those same six selected leaf nodes in top-to-
bottom order in the tree view. As discussed in the
previous section, the hierarchy of the tree structure
is also shown in the header cells of the matrix
view, and the status of unexpanded parent nodes
indicated by “[+I” prefixes on names. Note that in
the matrix view the children of an unexpanded
parent node are not displayed; to see these details,
the user must return to the tree view.

the total impact of a FM is computed by summing over
each requirement the requirement’s weight times the
FM’s impact on that requirement, and multiplying the
sum by the FM’s likelihood. This yields the (a-priori)
expected impact of that FM. The DDP tool (like its
predecessor spreadsheet-based proof-of-concept)
computes this information automatically. Furthermore,
DDP offers visualizations of the information, as follows:

Requirements: a column is shown for each
(included) requirement. A fragment of the requirements
bar-chart display is shown below:

5. Summarization and Aggregation
5.1. Desiderata

Summarization and aggregation are essential
techniques to condense large amounts of detailed
information.

5.2. DDP Realization
DDP manipulates several quantitative relationships

on and between its data elements. Requirements have
weights - a measure of their relative importance. FMs
have a-priori likelihoods - their probability of
occurrence if nothing is done to inhibit them. FMs are
linked to requirements by “impact” - the proportion of
the requirement that would be lost if the FM were to
occur. PACTs are linked to FMs by “effect” - the
proportional reduction in the FM’s likelihood that
application of the PACT would obtain.

The DDP process computes a variety of
summarization information from this data. For example,

L ” . , . , , ,

Figure 7. Bar-chart view of Requirements

The height of a requirement’s column indicates the
logarithm of the requirement’s weight. (DDP uses log
scales because the application domain is concerned with
reduction of risk to very small levels). Colors within
each column are used to convey the current effect of the
FMs and selected PACTs:

*Blue (shown here as light gray) indicates the portion
of a requirement that is unimpacted by any FM.

*Green (shown here as dark gray) indicates the
expected loss, due to FMs, that has been
prevented by the current set of PACTs.

*Red (shown here as black) indicates the expected
loss due to FMs, despite the current set of PACTs
(since not all PACTs are perfect, some
expectation of loss typically remains).

The left-to-right order of the columns is the same as
the top-to-bottom fringe requirements in the tree view of
requirements (and therefore the same as the left-to-right
cells of the matrix view of requirements). Recall the use
of the blob to highlight the column in current focus.

Like many tools, DDP provides for Pareto diagrams The height of a FM's column indicates the logarithm
by offering the ability to sort the data displayed in bar of the FM's summed impact on all included
charts. The figure below shows the left fragment of the requirements. Colors within each column are used to
same set of requirements sorted by the height of the red convey the current effect of selected PACTs: -
column, i.e., the amount of expected loss of requirement
weight:

Requirements [log scale]
23 Operation ovedpost Environmental Reqts = TBD, except moolial

"""""""""""""""""""

15 22 8 6 9 5 12 14 7 45 11 19 27 29 28 40 42 47 !
. . , , . , , , ,, . .

Figure 8. Sorted bar-chart view of Requirements.
I_ I

.Green (shown here as dark gray) indicates the
expected loss due to that FM that has been
prevented by the current set of PACTs.

*Red (shown here as black) indicates the expected
loss due to FMs, despite the current set of
PACTs.

As with the requirements bar chart, the left-to-right
order is by default the same as the top-to-bottom order
in the tree view, and an option to sort by height of red
bars is available.

DDP also computes numerical summarizations of
"aggregated" information. Section 4 discussed the tree-
view's control of hierarchical structuring, and how that
is replicated in the matrix view - the rows and columns
of a matrix are the current "fringe" nodes of the
corresponding trees. When a sub-tree contracted, the
corresponding single row/column corresponds to that
entire sub-tree. In particular, the numerical values in
each cell in that row/column are aggregations of the
values within the contracted sub-tree.

In the Requirement x FM matrix view, impact is
expressed as the proportion of the requirement that
would be lost. The aggregate requirement is composed
of all its sub-tree's leaf requirements, and hence the

Note that the highlighting of the in-focus requirement aggregate proportional loss & a combination (suitably
(via the blob beneath its column) shows where that weighted by the relative importance of the requirements)
requirement has moved to after sorting. of its leaf-node requirements' loss (it should be clear

why we need mechanization to compute this!). For
FMs: a column is shown for each (included) FM. A example, the upper portion of Fig. 10 shows requirement

fragment of the FM bar-chart display is shown below: Oper ... as unexpanded; its numerical values are
aggregations of its constituent requirements. The lower

12 13 14 16 18 19 22 23% 26 27 28 30 31 32 34 35 36 38 39

with sub-tree collapsed, shows the height of the bar
corresponding to the total failure mode impact on the
weighted requirement (Fig 11). We see here that the red
portion of this bar is relatively high as compared to
most of the other visible bars. In this case the user
probably would decide to zoom in to the details by
expanding that sub-tree of requirements. If, however,
the red bar had been relatively low, the user might have

, . , been content, and never needed to expand the sub-tree.

Figure 9. Bar-chart view of FMs In summary, we perceive summarization and
aggregation helps users to grasp the big picture, and to
draw to their attention those areas where they need to

investigate the details.

Figure IO. Collapsed (top) and expanded
(bottom) sub-tree in matrix

6. Versions
6.1. Desiderata

Some form of version control is indispensable if
requirements interaction management is to be scalable.
Multiple versions can arise as a result of specialization
(e g , a baseline set of information is specialized for the
task in hand), concurrency (e.g., when subdividing a
large task among multiple people, who work in parallel),
and investigation of alternatives (e.g., “what-if’
explorations). Version control must provide an
appropriate mix of isolation and dependency among
different versions. Isolation is needed to ensure that
modifications made in one version do not inadvertently
propagate to others. Conversely, dependency is needed
to ensure that modifications made in one version do
propagate to other versions that are in an appropriate
correspondence to the modified version.

DDP’s design continues to evolve. We anticipate the
need to work on the following areas, all of which will
likely further exercise the need for scalability:

Yet more data: As more institutional data is
gathered, the data sets will grow fixther. Additional
techniques may be needed if scaling is to accommodate
an order of magnitude or more increase in information.

Process: At present the DDP tool offers only
rudimentary guidance on how to proceed through the
major steps of the DDP process. This could be improved,
particularly to help users navigate within, and between,
stages of brainstorming, decision-making, etc.

Merging: We know we need to add support for
concurrent DDP activities, followed by a merge process
to combine the separate results. Dr. Barbara Gannod of
Arizona State University has studied the issue with DDP
in mind, and her development of tool support for this is
in progress.

Enrichment of the types of data and relationships.
We may choose to augment FMs with probabilistic
distributions, and extend the computations accordingly.
We may choose to cross-reference requirements to the
design structure. Enrichments such as these may well
induce the need for further kinds of views. Once we
include cost information for PACTs, we can begin to
automate the search for optimal sets of PACTS.

Integrate with design processes - DDP’s prime focus
is on planning for risk management. DDP could benefit
from integration with design activities, and the processes
and support tools that exist for them. Note that the
outcome of DDP is a set of choices of PACTs (risk
mitigants). In the course of performing those PACTs we

6.2. DDP Realization

We foresee all these issues arising in the application
of DDP to risk tradeoff analysis. For example, a
particular project will want to inherit and specialize pre- : Requirerr
built trees of typical FM. Multiple people will want to be
able work on different parts of the requirements
elicitation, and thereafter merge their results. Users will
want to study different choices of sets of PACTs side-
by-side.

To date, DDP’s support for these aspects of version
control is only partially complete. DDP data is already
set up to be cumulative, i.e., any changes (whether they
be additions, updates or deletions) are recorded as
additional data, associated with a version. For example,
if a FM is deleted, then internally the data record
corresponding to that FM is retained, and an additional Figure 11. Collapsed sub-tree in bar
data item is created, indicating the deletion and the chart

might learn additional information that should be fed
back into a DPP-like process - i.e., DDP might become
an ongoing activity continually kept in step with
development.

8. Related Work and Conclusions
In the arena of requirements interaction management

we are aware of several other efforts beginning to
address the issues of scalability.

All processes for requirements interaction
management share the concern of how to deal with
activities that incur a cost that grows more-than-linearly
with the number of requirements. For example,
requirements prioritization or conflict resolution is often
based on considering all painvise combinations of
requirements, an O(n2) operation for n requirements.

[Robinson & Pawlowski, 19981 present a method that
circumvents this quadratic growth by identifying “root”
requirements (“which represent key concepts from
which other requirements are derived through
elaboration”). The end result of their method is a
classification hierarchy of requirements. Their method
helps construct this hierarchy. [Ryan & Karlsson, 19971
also consider strategies to address this same problem,
e.g., taking advantage of the knowledge of mutual
exclusion between requirements to automatically rule
out all subsets in which both those requirements are
simultaneously included. In the WinWin system
[Boehm & In, 19961, this same issue is addressed by use
of a quality attribute hierarchy to narrow attention to
those requirements that conflict over the same quality
attribute.

DDP would appear to face these same problems in
completing the requirements x FM, and PACT x FM
matrices. However, DDP users seem adept at organizing
their information into hierarchies, such that the subsets
of information that could plausibly interact are easy to
narrow down. Also, the tool’s use of summarization and
aggregation (section 5) can help users recognize when
they need not descent to lower levels of detail.

Graphical visualizations of requirements information
are also emerging. [Park et al, 19991 present their
Distributed Collaboration Priorities Tool (DCPT), a
companion tool to WinWin that helps prioritization of
development items and risk reduction. DCPT makes
repeated use of a variety of styles of 2-D charts whose
axes represent orthogonal continuous-valued measures
(e.g., importance vs. difficulty; probability vs. loss).
These are used to display information to users, to help
them make selections (e.g., based on Return-On-
Investment as seen in the Importance vs. Difficulty
chart). Focal PointTM [Focal Point AB], likewise uses 2-
D charts to show importance (value) against cost, and
integrates check-boxes into this same chart for intuitive
use and ease of (de)selection.

In DDP the primary objective is to choose a cost-
effective set of PACTS whose net effect will reduce risk
to an acceptable level. However, to date cost information
(schedule, budget, personnel or whatever) is not
recorded! This leaves it to the insight of users to make
the costhenefit tradeoffs. The main value they obtain
from the tool is the understanding of the expected loss of
requirements. Perhaps because of this state of affairs, we
have the found bar chart displays described in Section 5
to be the most appropriate means to portray quantitative
aspects.

DCPT use the aforementioned 2-D presentations for
assisting multiple users to reconcile differences (e.g.,
over the spread of opinions on the importance vs.
difficulty of a single requirement).

To date we have used DDP primarily in a non-
distributed fashion, were the multiple stakeholders are
together at the same time and place. This seems to
circumvent the need to provide elaborate support for
maintaining multiple conflicting opinions
simultaneously. Instead, we find that users almost always
are solve the problem in one of the following ways:

*Resolve the issue by immediate discussion, yielding
a single agreed upon result, which can then be
entered.

*Defer decision until later. The tool offers the option
of entering a non-numerical value into matrices
(e.g., “??? this is either 0.1 or O S ’ ’) , which
the tool ignores for performing numerical
calculations, but displays for users to locate and
respond to at a later date.

.Realize that they are talking about related, but non-
identical, cases. Usually this results in a
bifurcation (e.g., what began as a disagreement
on the extend to which a particular FM impacts a
particular requirement leads to refming that FM
into two children of the original, each with their
own impact value). DDP’s tree manipulations
support this.

Graph structures, rather than simply tree structures,
are featured in several groups’ methodologies for
requirements interaction management. For example, the
KAOS methodology employs graphs to represent a
semantic network of goals, constraints and objects. The
KAOS support environment - GRAIL [Darimont et al,
19971 - provides a graphical editor for these structures.
GRAIL uses multiple views - the graph view for high-
level view of requirements, a text-based view for
entry/editing of the details, and a hypertext view for
navigating through a textual representation. As yet, DDP
has not needed to display graph structures, so we do not
have a direct equivalent of this kind of view.

We have discussed and illustrated scalability
mechanisms, embodied in a working tool that supports

NASA’s Defect Detection and Prevention (DDP)
process. Experience with using the tool on real examples
had convinced us of the need for addressing scalability,
and led to our development of these capabilities.

9. Acknowledgements
The research described in this paper was carried out

by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space administration through Code Q.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply
its endorsement by the United States Government or the
Jet Propulsion Laboratory, California Institute of
Technology.

10. References
@3oehm & In, 19961 B. Boehm & H. In. Identifying Quality-
Requirement Conflicts. IEEE Software, March 1996,25-36.

[Cornford, 19981 S. Cornford. Managing Risk as a Resource
using the Defect Detection and Prevention process.
International Conference on Probabilistic Safety Assessment
and Management, September 13-18, 1998.

[Czuchry & Harris, 19881 A.J. Czuchry, Jr. & D.R. Harris.
KBRA: A new paradigm for requirements engineering. IEEE
Expert, Winter 1988. 3(4):21-35.

[Darimont et al, 19971 R. Darimont, E. Delor, P. Massonet &

A. van Lamsweerde. GRAILKAOS: An Environment for
Goal-Driven Requirements Engineering. International
Conference on Software Engineering, May 1997,6 12-6 13.

[Focal Point AB] Focal PointTM, a trademark of Focal Point AB
http://www.focalpoint.se

[Karlsson & Ryan, 19971 J. Karlsson & K. Ryan. A Cost-
Value Approach for Prioritizing Requirements. IEEE Software,
Sept./Oct. 1997, 67-74.

[Park et al, 19991 J-W. Park, D. Port, B. Boehm, & H. In.
Supporting Distributed Collaborative Prioritization for
WinWin Requirements Capture and Negotiations. International
Workshop on Process support for Distributed Team-Based
Software Development (PDTSD’99) in World MultiConference
SCI/ISAS ‘99, Orlando, August, 1999

mobinson et al., 19991 W.N. Robinson, S.D. Pawlowski & S.
Volkov. Requirements Interaction Management. Working
Paper of Georgia State University - contact the lead author at:.
wrobinson@gsu.edu

[Robinson & Pawlowski, 19981 W.N. Robinson, S. Pawlowski.
Surfacing Root Requirements Interactions from Inquiry Cycle
Requirements. International Conference on Requirements
Engineering, IEEE, April 6-10, 1998, Colorado Springs, CO,
pp. 82-89

[Ryan & Karlsson, 19971 K. Ryan & J. Karlsson. Prioritizing
Software Requirements in an Industrial Setting. International
Conference on Software Engineering, May 1997, IEEE
Computer Society, 564-565.

[Saaty, 19801 T.L. Saaty. The Analytic Hierarchy Process.
McGraw-Hill, New York, 1980.

[UML] http://www.rational.com/uml

http://www.focalpoint.se
mailto:wrobinson@gsu.edu
http://www.rational.com/uml

